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Abstract

We present a method for finding errors in formalized natural language grammars, by
automatically and systematically generating test cases that are intended to be judged
by a human oracle. The method works on a per-construction basis; given a construction
from the grammar, it generates a finite but complete set of test sentences (typically tens
or hundreds), where that construction is used in all possible ways. Our method is an
alternative to using a corpus or a treebank, where no such completeness guarantees can
be made. The method is language-independent and is implemented for the grammar
formalism pmcfg, but also works for weaker grammar formalisms. We evaluate the
method on a number of different grammars for different natural languages.

1 Introduction

What is the essence of a language? When formalizing and implementing a natural language
grammar, which example sentences do we need to check in order to convince ourselves that the
grammar is correct?

Imagine we are formalizing a grammar for English, and in particular we are working on the
reflexive construct. In order to check correctness for the 3rd person singular, we need to test
for three different subjects, because the object has to agree with the subject: “he sees himself”,
“she sees herself” and “it sees itself”. Without seeing all three examples, we cannot be certain
that the reflexive construction is implemented correctly. In contrast, the general pattern of a
transitive verb with a non-reflexive object is enough to test with only one third person subject:
he, she, it, or any singular noun or proper name. The agreement only shows in the verb form,
thus including both “she sees a dog” and “John sees a dog” in the test suite is redundant.

What is minimal and representative depends on the language. For instance, Basque transitive
verbs agree with both subject and object, thus we need 6 × 6 examples just to cover all verb
forms. In this paper, we are not interested in the morphology per se—there are easier methods
to test for that—but the correctness of the syntactic function: does the function pick the correct
verb form for the correct combination of subject and object? For that purpose, it is enough to
test the syntactic construction “transitive verb phrase” with just a single transitive verb.

We present a method that, given a grammar (that in general encompasses an infinite set of
sentences), generates a finite set of sentences that can be used as test cases for the correctness
of the grammar. Our concrete implementation is for a particular grammar formalism, namely
parallel multiple context-free grammars (pmcfg) (Seki et al., 1991), which is the core formalism
used by the Grammatical Framework (gf) (Ranta, 2004). However, the general method works for
any formalism that is at most as expressive as pmcfg: context-free grammars (cfg) and multiple
context-free grammars (mcfg), which covers formalisms such as Tree-Adjoining Grammar (Joshi
et al., 1975), Combinatorial Categorial Grammar (Steedman, 1988) and Minimalist Grammar
(Stabler, 1997).



2 Grammatical Framework

Grammatical Framework (gf) (Ranta, 2004) is a framework for building multilingual grammar
applications. Its main components are a functional programming language for writing grammars
and a resource library (Ranta, 2009), which, as of May 2018, contains the linguistic details of
40 natural languages. gf is well suited for tasks where quality matters more than coverage—
examples include mathematical and legal domains (Caprotti, 2006; Camilleri, 2017). The library
has had over 50 contributors, and it consists of 1900 program modules and 3 million lines of
code! The complexity of such a piece of code clearly motivates dedicated test methods, such as
the one described in this paper.

A gf grammar consists of an abstract syntax, which is a set of grammatical categories and
functions between them, and one or more concrete syntaxes, which describe how the abstract
functions and categories are linearized, i.e. turned into surface strings. The resulting grammar
describes a mapping between concrete language strings and their corresponding abstract trees.
This mapping is bidirectional—strings can be parsed to trees, and trees linearized to strings. As
an abstract syntax can have multiple corresponding concrete syntaxes, the respective languages
can be automatically translated from one to the other by first parsing a string into a tree and
then linearizing the obtained tree into a new string. Figure 1 shows the abstract syntax of a
small example grammar in GF, slightly modified from (Ranta, 2011), and Figure 2 shows a
corresponding Spanish concrete syntax. We refer to this grammar throughout sections 2–4.

abstract Foods = {
flags startcat = S ;

cat

S ; NP ; CN ; AP ;

fun

Pred : NP -> AP -> S ; -- this wine is good

This, That, These, Those : CN -> NP ; -- this wine

Mod : AP -> CN -> CN ; -- Italian wine

Wine, Cheese, Fish, Pizza : CN ;

Warm, Good, Italian, Vegan : AP ;

Figure 1: Abstract syntax of a GF grammar about food

2.1 Abstract syntax

Abstract syntax describes the constructions in our grammar without giving a concrete implemen-
tation. Section cat introduces the categories of the grammar: S for sentence, NP for noun phrase,
AP for adjectival phrase, and CN for common noun, which can be modified by APs, but hasn’t yet
been quantified into an NP. S is the start category of the grammar: this means that sentences are
complete constructions in the language, everything else is an intermediate stage.

Section fun introduces functions: they are either lexical items without arguments, or syntactic
functions which manipulate their arguments and build new terms. Of the syntactic functions,
Pred constructs an S from an NP and an AP, building trees such as Pred (This Pizza) Good

‘this pizza is good’. Mod adds an AP to a CN, such as Mod Italian Pizza ‘italian pizza’. The
functions This, That, These and Those quantify a CN into an NP, for instance, That (Mod

Italian Pizza) ‘that italian pizza’.

2.2 Concrete syntax

Concrete syntax is an implementation of the abstract syntax. The section lincat corresponds
to cat in the abstract syntax: for every abstract category introduced in cat, we give a concrete
implementation in lincat.



concrete FoodsSpa of Foods = {
lincat

S = Str ;

NP = { s : Str ; n : Number ; g : Gender } ;

CN = { s : Number => Str ; g : Gender } ;

AP = { s : Number => Gender => Str ; p : Position } ;

lin

Pred np ap = np.s ++ copula ! np.n ++ ap.s ! np.n ! np.g ;

This cn = mkNP Sg "este" "esta" cn ;

These cn = mkNP Pl "estos" "estas" cn ;

-- That, Those defined similarly

Mod ap cn = { s = \\n => preOrPost ap.p (ap.s ! n ! cn.g) (cn.s ! n) ;

g = cn.g } ;

--Wine, Cheese, ..., Italian, Vegan defined as lexical items

param

Number = Sg | Pl ;

Gender = Masc | Fem ;

Position = Pre | Post ;

oper

mkNP num mascDet femDet cn =

let det = case cn.g of { Masc => mascDet ; Fem => femDet } ;

in { s = det ++ cn.s ! num ; n = num ; g = cn.g } ;

copula = table { Sg => "es" ; Pl => "son" } ;

preOrPost p x y = case p of { Pre => x ++ y ; Post => y ++ x } ;

Figure 2: Spanish concrete syntax of a GF grammar about food

Figure 2 shows the Spanish concrete syntax, in which S is a string, and the rest of the categories
are more complex records. For instance, CN has a field s which is a table from number to string
(sg ⇒ pizza, pl ⇒ pizzas), and another field g, which contains its gender (feminine for Pizza).
We say that CN has inherent gender, and variable number.

The section lin contains the concrete implementation of the functions, introduced in fun.
Here we handle language-specific details such as agreement: when Pred (This Pizza) Good is
linearized in Spanish, ‘esta pizza es buena’, the copula must be singular (es instead of plural
son), and the adjective must be in singular feminine (buena instead of masculine bueno or
plural buenas), matching the gender of Pizza and the number of This. If we write an English
concrete syntax, then only the number of the copula is relevant: this pizza/wine is good, these
pizzas/wines are good.

3 PMCFG

gf grammars are compiled into parallel multiple context-free grammars (pmcfg), which are
processed by our tool. Here we explain three key features for the test suite generation.

3.1 Concrete categories

For each category in the original grammar, the gf compiler introduces a new concrete category
in the pmcfg for each combination of inherent parameters. These concrete categories can be
linearized to strings or vectors of strings. The start category (S in the Foods grammar) is in
general a single string, but intermediate categories may have to keep several options open.

Consider the categories NP, CN and AP in the Spanish concrete syntax. Firstly, NP has inherent
number and gender, so it compiles into four concrete categories: NPsg×masc, NPsg×fem, NPpl×masc



and NPpl×fem, each of them containing one string. Secondly, CN has an inherent gender and
variable number, so it compiles into two concrete categories: CNmasc and CNfem, each of them a
vector of two strings (singular and plural). Finally, AP needs to agree in number and gender
with its head, but it has its position as an inherent feature. Thus AP compiles into two concrete
categories: APpre and APpost, each of them a vector of four strings.

3.2 Concrete functions

Just like categories, each syntactic function from the original grammar turns into multiple
syntactic functions in the pmcfg—one for each combination of parameters of its arguments.

– Modpre×fem : APpre → CNfem → CNfem

– Modpost×fem : APpost → CNfem → CNfem

– Modpre×masc : APpre → CNmasc → CNmasc

– Modpost×masc : APpost → CNmasc → CNmasc

3.3 Coercions

As we have seen, AP in Spanish compiles into APpre and APpost. However, the difference of position
is meaningful only when the adjective is modifying the noun: “la buena pizza” vs. “la pizza
vegana”. But when we use an adjective in a predicative position, both classes of adjectives behave
the same: “la pizza es buena” and “la pizza es vegana”. As an optimization strategy, the grammar
creates a coercion: both APpre and APpost may be treated as AP∗ when the distinction doesn’t
matter. Furthermore, the function Pred : NP → AP → S uses the coerced category AP∗ as its
second argument, and thus expands only into 4 variants, despite there being 8 combinations of
NP×AP.

– Predsg×fem×∗ : NPsg×fem → AP∗ → S

– Predpl×fem×∗ : NPpl×fem → AP∗ → S

– Predsg×masc×∗ : NPsg×masc → AP∗ → S

– Predpl×masc×∗ : NPpl×masc → AP∗ → S

4 Generating the test suite

We now have all building blocks for creating a representative and minimal set of test cases. In
the previous section, we saw how a single abstract category compiles into multiple concrete
categories, depending on the combinations of parameters. Instead of dealing with parameters
directly, we now have a set of new types, which is helpful for generating test cases.

We use one syntactic function as the base for one set of test cases. For lexical categories, it
also makes sense to test the whole category, i.e. generate all trees that show that adjectives in
general are defined and handled correctly in the functions. However, we only explain in detail
the method with one syntactic function as a base.

We assume that all test cases are trees with the same start (top-level) category, such as S in
our example grammar. The requirement is that the start category is linearized as one string only.

4.1 Enumerate functions

As we explained before, each syntactic function turns into multiple versions, one for each
combination of parameters of its arguments. We test each of these versions seperately. Each
concrete syntactic function may produce one or several trees.

In order to construct trees that use the syntactic function, we need to supply the function with
arguments, as well as put the resulting tree into a context that produces a tree in the correct
start category.



4.2 Enumerate arguments

Some syntactic functions are simply a single lexical item (for example the word good); in this
case just the tree Good is our answer. If we choose a function with arguments, such as Pred,
then we have to supply it with argument trees. Each argument needs to be a tree belonging to
the right category; in the case of Pred, the categories are NP and AP.

When we test a function, we want to see whether or not it uses the right information from its
arguments, in the right way. The information that a syntactic function uses is any of the strings
that come from linearizing its arguments. In order to be able to see which string in the result
comes from which field from which argument, we want to generate test cases that only contain
unique strings. For example, Good ‘bueno/buena/buenos/buenas’ is a better argument than
Warm ‘caliente/caliente/calientes/calientes’, because the latter is invariable for gender. If there is
no one argument that only contains unique strings, we generate a set of arguments, where for
each pair of strings from the arguments, there is always one test case where those strings are
different. In this way, if the syntactic function contains a mistake, there is always one test case
that reveals it.

In our implementation, we use the feat framework (Dureg̊ard et al., 2012) to enumerate
possible combinations of argument trees, in size order. We stop when we have found a suitable
set of combinations of arguments, according to the requirement above. We also stop (give up)
when too many tries have been made (currently 10,000), but we have not seen this happen in
practice.

Mod Good Pizza Mod Good Wine

(sg) buena pizza (sg) buen vino
(pl) buenas pizzas (pl) buenos vinos

Mod Vegan Pizza Mod Vegan Wine

(sg) pizza vegana (sg) vino vegano
(pl) pizzas veganas (pl) vinos veganos

Table 1: Agreement and placement of adjectives in attributive position

Table 1 shows test cases for the function Mod : AP → CN → CN in the Spanish concrete
syntax. Firstly, we need a minimal and representative set of arguments: one premodifier and one
postmodifier AP (Good and Vegan), as well as one feminine and one masculine CN (Pizza and
Wine). Thus our full set of test cases are Mod applied to the cross product of { Good

Vegan
} × {Pizza

Wine
}.

4.3 Enumerate contexts

The third and last enumeration we perform when generating test cases is to generate all possible
uses of a function. After we provide a function with arguments, we need to put the resulting tree
into a context, so that we can generate a single string from the result. By context, we mean a
tree in the start category (S in our example) with a hole of the same type as the function under
test (denoted by _).

Pred (This (Mod Good Pizza)) Italian Pred (This (Mod Good Wine)) Italian

esta buena pizza es italiana este buen vino es italiano

Pred (These (Mod Good Pizza)) Italian Pred (These (Mod Good Wine)) Italian

estas buenas pizzas son italianas estos buenos vinos son italianos

Pred (This (Mod Vegan Pizza)) Italian Pred (This (Mod Vegan Wine)) Italian

esta pizza vegana es italiana este vino vegano es italiano

Pred (These (Mod Vegan Pizza)) Italian Pred (These (Mod Vegan Wine)) Italian

estas pizzas veganas son italianas estos vinos veganos son italianos

Table 2: Complete test cases to test Mod



The important thing here is that the generated set of contexts shows all the possible different
ways the tree can be used. For example, for a test tree with an inflection table of 4 forms, we
would generate 4 different sentences in which each of the 4 inflections is used.

As an example, consider generating contexts for a tree of category CN. Since CN is variable for
number, we need two contexts: one that picks out the singular form and other that picks out the
plural form. This suggests that we should apply two different CN → NP functions, for instance
This and These, and give their results to the Pred function, which constructs an S. In contrast,
the second argument to Pred doesn’t make a difference in what form we pick out of the CN—we
just want to pick something that has maximally different forms, so the program is sure not to
pick Warm, which is invariable for gender. By random selection, let us pick Italian. The final
two contexts are therefore Pred (This _) Italian and Pred (These _) Italian. We insert
the 4 test cases from Table 1 into the 2 contexts, and get 8 trees in total, as shown in Table 2.

Fixpoint iteration In our tool, computing relevant contexts in a given start category S, is
done once, in advance, for all possible hole types H at the same time, using a fixpoint iteration.
It is possible to express the set of relevant contexts for one hole type H in terms of the sets of
relevant contexts for other hole types H ′:

contexts(H) = filter( {C[F ( )] | F ∈ H → H ′, C ∈ contexts(H ′)} )

In words, to generate contexts with holes of type H, we enumerate all functions F that have a
H as an argument, and enumerate all contexts C that have the result type H ′ of F as a hole
type, and put C and F together to get a new context. Then, we apply a function filter to the
result in order to filter out redudant contexts, i.e. contexts whose uses of the strings of H are
already covered by other contexts in the same set.

To compute relevant contexts with the start category S as a hole, we use the following definition
contexts(S) = { }. Now, in order to compute all sets of contexts for all possible hole categories
H, we set up a system of equations (as specified above). In general, this system of equations is
recursive, and we use a fixpoint iteration to solve it, starting with the empty set for each set of
contexts. There is a guaranteed minimal solution, because the RHSs are monotonic in H ′.

4.4 Pruning the trees within one set of test cases

On the scope of our tiny example grammar, this pruning method is easiest to illustrate when we
test a category instead of a function; however, in bigger grammars, the need arises when testing
functions as well. In order to test the category AP, we need in total 12 example sentences:

– 4 test cases for a premodifier AP as modifier;

– 4 test cases for a postmodifier AP as modifier;

– 4 test cases for any AP as predicative.

4 test cases for a premodifier AP as predicative

4 test cases for a postmodifier AP as predicative

These categories correspond to the concrete categories APpre, APpost and the coercion AP∗ (as
explained in Section 3.3). However, without this pruning step, the method would generate in
total 16 trees: it would insert both pre- and postmodifier APs into a predicative context. With
the help of coercions in the grammar, we detect and remove redundant trees from the test set.

4.5 Pruning the trees to test the whole grammar

So far we have completely ignored that one tree can showcase more than one function. In fact,
the 8 test sentences created for Mod happen to also test Pred exhaustively. Let us recap the steps
we took to create them for Mod: enumerating arguments brought us Good, Vegan, Pizza and
Wine, and enumerating contexts brought us This and These. Had we been creating test cases



for Pred, we would’ve gotten This and These at the stage of enumerating arguments, and then
there would’ve been no need for contexts, because Pred already creates the start category S.

There is a simple way to detect the redundancy: make the generation of arguments completely
deterministic, e.g. always choose the function that is alphabetically first. The downside is that
we get a lot of redundancy, in the style of “the pizza gives the pizza the pizza”. However, if we
want to generate sentences for the whole grammar at one go, we can split the generation in two
stages: first stage is deterministic, where every feminine noun is Pizza, and we can eliminate
redundancies by just eliminating copies of the same tree. Then, when we have a set of unique
trees, we can substitute individual words in them with other words in the same concrete category.

It would be ideal to generate sentences that make sense, such as “the waitress gives the girl
the pizza”. If the grammar is purely syntactic, we would need external tools to ensure semantic
coherence, but if the grammatical categories already include semantic distinctions, e.g. limiting
the subject and indirect object of give to humans, that naturally restricts the generated test
suite.

5 Example use

Let us take the GF resource grammar (Ranta, 2009) for Spanish, and pick the function AdvCN

: Adv → CN → CN, modifies a CN with an adverb. The tool generates test cases in the way
described previously, which include the following (slightly simplified) trees:

– AdvCN (PrepNP next to (DetNP your)) hill ‘hill next to yours’

– AdvCN (PrepNP next to (DetNP your)) house ‘house next to yours’

In Spanish, the words hill and house have different genders, and the word yours has to agree in
gender with the antecedent: (la) casa al lado de la tuya and (el) cerro al lado del tuyo. The test
cases reveal a bug, where DetNP your picks a gender too soon, say always masculine, instead of
leaving it open in an inflection table. We implement a fix by adding gender as a parameter to
the Adv type, and have AdvCN choose the correct form based on the gender of the CN.

After implementing the fix, we run a second test case generation, in order to compare the old
and new versions of the grammar. We want to make sure that our changes have not caused new
bugs in other functions. The simplest strategy is to generate test cases for all functions in both
grammars, and only show those outputs that differ between the grammars. After our fixes, we
get the following differences:

DetCN the (AdvCN (PrepNP next to (DetNP your)) house)

– la casa al lado del tuyo

– la casa al lado de la tuya

DetCN the (AdvCN (PrepNP next to (DetNP this)) house)

– la casa al lado de este

– la casa al lado de esta

We notice a side effect that we may not have thought of: the gender is retained in all adverbs
made of NPs made of determiners, so now it has become impossible to say “the house next to
that” and pointing to a hill. So we do another round of modifications, compute the difference (to
the original grammar or to the intermediate), and see if something else fails.

6 Evaluation

We generate test cases for two grammars of different sizes, using three languages from different
language families: Dutch, Estonian and Basque. Dutch, an Indo-European language, has fairly
simple nominal and verbal morphology, but the rules for handling word order, prefixes and
particles in verb phrases are somewhat intricate. Estonian and Basque both have rich noun



morphology, each featuring 14 grammatical cases, but Basque verb morphology is much more
complex. Table 3 shows what happens when we ran our tool on some example functions from
the resource grammar, and Table 4 shows the number of generated trees in total for all syntactic
functions in two different grammars. As stated earlier, we do not consider generating test cases
for all functions an optimal way of testing a whole resource grammar from scratch; Table 4 gives
merely a baseline reduction from all possible trees up to a reasonable depth. We introduce the
grammars and comment on the results in the following sections.

Resource grammar function Dutch Estonian Basque

ComparA ‘stronger than you’ 10 20 6
ComplVS ‘say that I sleep’ 89 171 104
RelNP ‘a cat that I saw’ 2 23 20
ReflVP ‘see myself’ 1034 343 1082

Table 3: Test cases for some individual functions in the resource grammar

Concrete → Dutch Estonian Basque
↓ Abstract #funs+lex #trees #total #uniq #total #uniq #total #uniq

Phrasebook 130+160 >480,000 513 419 610 505 538 503

Resource gr. 217+446 >500 billion 21,370 19,825 13,733 9,194 100,967 64,390

Table 4: Test cases for all functions in two grammars

6.1 Grammars

The first grammar is Phrasebook (Ranta et al., 2012), a mid-size application grammar with
42 categories such as Person, Currency, Price and Nationality, 160-word lexicon and 130
functions with arguments. The trees in the Phrasebook are more semantic than the trees we
have seen so far: for example, the abstract tree for the sentence “how far is the bar?” in the
Phrasebook is PQuestion (HowFar (ThePlace Bar)), at depth 3, in contrast to the resource
grammar tree1 for the same sentence, which is of depth 6. Limiting up to depth 3, the Phrasebook
grammar produces over 480,000 trees.

The second grammar is a subset of the gf resource grammar (Ranta, 2009), with 84 categories,
217 syntactic functions and 446 words in the lexicon. Since all the languages did not have a
complete implementation, we simply took the subset of functions that was common, and removed
manually a couple of rare constructions and words that are potentially distracting. This fragment
produces hundreds of billions of trees already up to depth 5. None of the resource grammars has
been tested systematically before—for the Estonian grammar (Listenmaa and Kaljurand, 2014),
the morphological paradigms were tested extensively against existing resources, but syntactic
functions were only tested with a treebank of 425 trees.

6.2 Results

Execution time We ran all the experiments on a MacBook Air with 1,7 GHz processor and
8 GB RAM. For Phrasebook, it took just seconds to generate the test suite for all languages.
For the resource grammar, Dutch and Estonian finished in 3–4 minutes. However, the Basque
resource grammar is noticeably more complex, and creating test trees for all functions took
almost three hours.

Generated trees We report both total and unique trees: total trees are simply the sum of all
trees for all functions, and unique trees is the count after removing duplicates, as explained in
Section 4.5 (“the pizza gives the pizza the pizza” style).

1UttQS (UseQCl (TTAnt TPres ASimul) PPos (QuestIComp (CompIAdv (AdvIAdv how IAdv (PositAdvAdj
far A))) (DetCN (DetQuant DefArt NumSg) (UseN bar N))))



As we can see, the number of trees differs a lot. Table 3 shows some expected patterns: Basque
and Estonian have more complex nouns than Dutch, so RelNP needs more tests. Likewise, Basque
and Dutch have more complex verb phrases (for different reasons!) than Estonian, so ReflVP

needs more tests. In general, we believe the number of test cases has both language typological and
grammar engineering reasons. Other resource grammarians have reported significant differences
in complexity between implementations: (Enache et al., 2010) report a 200-time reduction in the
number of concrete rules after changing the implementation of clitics in verb phrases. It would
be interesting to test two different implementations of the same language using this method.

Finding bugs The Basque resource grammar is still a work in progress, and the test sentences
showed serious problems in morphology. We thought it premature to get a fluent speaker to
evaluate the grammar, because the errors in morphology would probably make it difficult to
assess syntax separately. Phrasebook was implemented using the resource grammar, so it was
equally error-ridden.

For Estonian, we read through all the Phrasebook test sentences. These 505 sentences showed
a handful of bugs, all coming from Phrasebook itself not the resource grammar. Most were
individual words having the wrong inflection paradigm (the right one exists in the resource
grammar, but wrong one was chosen by the application grammarian), but there were also some
bugs in more general functions—for example, using a wrong form of nationality when applied
to a human and when to an institution, along the lines of “Spaniard restaurant”. As expected,
Phrasebook sentences were easier to read, and made more sense semantically than sentences
from the resource grammar.

We have been developing the tool by testing it on the Dutch resource grammar, and during 6
months, we have committed 22 bugfixes on Dutch in the gf main repository. (In the name of
honesty, a few of the bugs were caused by our earlier “fixes”—that was before we had implemented
the comparison against an older version of the grammar, explained in Section 5.) One of the
bugs found in Dutch was also present in other languages, so we fixed it in German and English.

7 Related work

Our approach is inspired by automatic test case generation for general software, such as (Hamon
et al., 2004). Software testing and grammar testing both deal with notions of coverage and
compactness. In computational linguistics, there has been work on error mining for parsing
grammars, such as (Gardent and Narayan, 2012).

There is a long tradition of hand-crafted test suites for various grammar formalisms. Tradi-
tionally, these test suites include also ungrammatical sentences: those that the grammar should
not be able to parse. However, most of the previous work is meant for monolingual grammars
which are either parsing or generation grammars, whereas gf is a reversible and multilingual
formalism: thus it is natural to represent test cases as trees. Finally, our method generalizes to
many kinds of grammars, including application grammars where the distinctions are not syntactic
but semantic.

8 Conclusion and future work

We have presented method for automatically generating minimal and exhaustive sets of test
cases for testing grammars. We have found the tool useful in large-scale grammar writing, in a
context where grammars need to be reliable.

One problem we have encountered is that the test sentences from resource grammars are often
nonsensical semantically, and hence a native speaker might intuitively say that a sentence is
wrong, even though it is just unnatural. For instance, the function AdvQVP covers constructions
such as “you did what?”. However, the function itself is completely general and can take any
verb phrase and any question adverb, thus bizarre combinations like “you saw the dog why” may
appear in the generated test cases. For future work, we plan to use external resources to guide
the algorithm to pick trees that also make sense semantically.



So far the only mode of operation is generating test cases for a single function. As future
work, we are planning to add a separate mode for testing the whole grammar from scratch:
intentionally create trees that test several functions at once. We have an implementation only
for gf grammars so far, but the general method works for any grammar formalism that can
be compiled into pmcfg. gf already supports reading context-free grammars, so testing any
existing cfg is a matter of some preprocessing.
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Everyday Use: The MOLTO Phrasebook. In Proceedings of the Second International Conference on
Controlled Natural Language, CNL’10, pages 115–136, Berlin, Heidelberg. Springer-Verlag.

[Ranta2004] Aarne Ranta. 2004. Grammatical Framework. Journal of Functional Programming,
14(2):145–189.

[Ranta2009] Aarne Ranta. 2009. The GF Resource Grammar Library. Linguistics in Language Technol-
ogy, 2.

[Ranta2011] Aarne Ranta. 2011. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications.

[Seki et al.1991] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On Multiple
Context-Free Grammars. Theoretical Computer Science, 88(2):191–229.

[Stabler1997] Edward P. Stabler. 1997. Derivational Minimalism. In Christian Retoré, editor, Logical
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